NLS equation on metric graphs with localized nonlinearities

Lorenzo Tentarelli

Dipartimento di Scienze Matematiche "G.L. Lagrange" - Politecnico di Torino

joint work with Enrico Serra

TQMS - Como 09/07/2015

Politecnico di Torino

1 Introduction

2 Existence and nonexistence of ground state

3 Existence of multiple bound states

Some background

Applications:

- the study of the NLS equation on graphs arises in complex networks, quantum chaotic systems and Bose–Einstein condensates (Gnutzmann, Smilansky - 2006);
- the issue of localized nonlinearity is of interest in transmission through complex networks of one-dimensional leads, e.g. optical fiber (Gnutzmann, Smilansky, Derevyanko - 2011).

Mathematical background:

- NLS with localized nonlinearities in standard domains (different point of view): Adami, Dell'Antonio, Figari, Teta – 2003; Cacciapuoti, Finco, Noja, Teta – 2014;
- NLS with non-localized nonlinearities on graphs: Adami, Cacciapuoti, Finco, Noja – 2012, 2014; Adami, Serra, Tilli – 2014, 2015.

Some background

Applications:

- the study of the NLS equation on graphs arises in complex networks, quantum chaotic systems and Bose–Einstein condensates (Gnutzmann, Smilansky - 2006);
- the issue of localized nonlinearity is of interest in transmission through complex networks of one-dimensional leads, e.g. optical fiber (Gnutzmann, Smilansky, Derevyanko - 2011).

Mathematical background:

- NLS with localized nonlinearities in standard domains (different point of view): Adami, Dell'Antonio, Figari, Teta – 2003; Cacciapuoti, Finco, Noja, Teta – 2014;
- NLS with non-localized nonlinearities on graphs: Adami, Cacciapuoti, Finco, Noja – 2012, 2014; Adami, Serra, Tilli – 2014, 2015.

Some background

Applications:

- the study of the NLS equation on graphs arises in complex networks, quantum chaotic systems and Bose–Einstein condensates (Gnutzmann, Smilansky - 2006);
- the issue of localized nonlinearity is of interest in transmission through complex networks of one-dimensional leads, e.g. optical fiber (Gnutzmann, Smilansky, Derevyanko - 2011).

Mathematical background:

- NLS with localized nonlinearities in standard domains (different point of view): Adami, Dell'Antonio, Figari, Teta – 2003; Cacciapuoti, Finco, Noja, Teta – 2014;
- NLS with non-localized nonlinearities on graphs: Adami, Cacciapuoti, Finco, Noja – 2012, 2014; Adami, Serra, Tilli – 2014, 2015.

Some background

Applications:

- the study of the NLS equation on graphs arises in complex networks, quantum chaotic systems and Bose–Einstein condensates (Gnutzmann, Smilansky - 2006);
- the issue of localized nonlinearity is of interest in transmission through complex networks of one-dimensional leads, e.g. optical fiber (Gnutzmann, Smilansky, Derevyanko - 2011).

Mathematical background:

- NLS with localized nonlinearities in standard domains (different point of view): Adami, Dell'Antonio, Figari, Teta – 2003; Cacciapuoti, Finco, Noja, Teta – 2014;
- NLS with non-localized nonlinearities on graphs: Adami, Cacciapuoti, Finco, Noja – 2012, 2014; Adami, Serra, Tilli – 2014, 2015.

Basics on metric graphs

As usual, with (connected) metric graph we mean a multigraph

$$\mathcal{G} = (V, E)$$

(possibly multiple edges and self-loops), where each edge e joining two vertices v_1 and v_2 is associated either with a closed bounded interval

$$I_e = [0, \ell_e] \subset \mathbb{R} \qquad \Rightarrow \quad e ext{ is a bounded edge}$$

or with a half-line

$$I_e = [0, +\infty) \subset \mathbb{R} \qquad \Rightarrow \quad e \text{ is an unbounded edge}$$

Basics on metric graphs

As usual, with (connected) metric graph we mean a multigraph

$$\mathcal{G} = (V, E)$$

(possibly multiple edges and self-loops), where each edge e joining two vertices v_1 and v_2 is associated either with a closed bounded interval

$$I_e = [0, \ell_e] \subset \mathbb{R} \qquad \Rightarrow \quad e \text{ is a bounded edge}$$

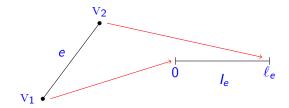
or with a half-line

$$I_e = [0, +\infty) \subset \mathbb{R}$$
 \Rightarrow e is an unbounded edge.

4/43

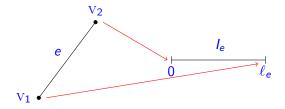
Basics on metric graphs

Moreover, a coordinate x_e is chosen in I_e , so that V_1 corresponds to $x_e = 0$ and V_2 to $x_e = \ell_e$



Basics on metric graphs

Moreover, a coordinate x_e is chosen in I_e , so that v_1 corresponds to $x_e = 0$ and v_2 to $x_e = \ell_e$ or viceversa.

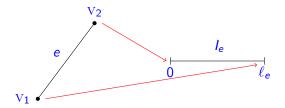


If $\ell_e = +\infty$, we always assume that the half-line l_e is attached to the graph at $x_e = 0$, and the vertex corresponding to $x_e = +\infty$ is called a vertex at infinity.

6/43

Basics on metric graphs

Moreover, a coordinate x_e is chosen in I_e , so that v_1 corresponds to $x_e = 0$ and v_2 to $x_e = \ell_e$ or viceversa.



If $\ell_e = +\infty$, we always assume that the half-line I_e is attached to the graph at $x_e = 0$, and the vertex corresponding to $x_e = +\infty$ is called a vertex at infinity.

6/43

Compact core

We say that a metric graph \mathcal{G} is compact if it does not contain any unbounded edge (or, equivalently, any vertex at infinity).

Definition

The *compact core* K is the metric subgraph of G consisting of all the bounded edges (and the related vertices).

Note that

- lacktriangleright \mathcal{K} is a compact metric graph
- K can be empty;
- lacksquare if $\mathcal G$ is compact (and non-trivial), then $\mathcal K=\mathcal G$

7/43

Compact core

We say that a metric graph \mathcal{G} is compact if it does not contain any unbounded edge (or, equivalently, any vertex at infinity).

Definition

The *compact core* K is the metric subgraph of G consisting of all the bounded edges (and the related vertices).

Note that

- \blacksquare \mathcal{K} is a compact metric graph
- K can be empty;
- \blacksquare if \mathcal{G} is compact (and non-trivial), then $\mathcal{K} = \mathcal{G}$.

7/43

Compact core

We say that a metric graph \mathcal{G} is compact if it does not contain any unbounded edge (or, equivalently, any vertex at infinity).

Definition

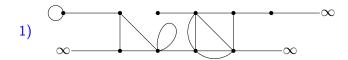
The *compact core* K is the metric subgraph of G consisting of all the bounded edges (and the related vertices).

Note that:

- K is a compact metric graph;
- K can be empty;
- if \mathcal{G} is compact (and non-trivial), then $\mathcal{K} = \mathcal{G}$.

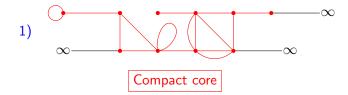
7/43

Examples

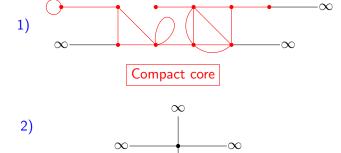


Lorenzo Tentarelli Politecnico di Torino

Examples



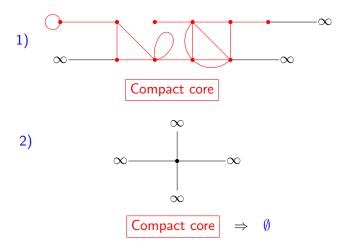
Examples



Lorenzo Tentarelli Politecnico di Torino

 ∞

Examples



Lorenzo Tentarelli Politecnico di Torino

Functions on graphs

A function $u: \mathcal{G} \to \mathbb{R}$ is a family of functions $u = (u_e)_{e \in E}$, with

$$u_e:I_e\to\mathbb{R}\qquad \forall e\in \mathcal{E}.$$

The usual Lebesgue function spaces can be defined as

$$u \in L^p(\mathcal{G}) \Leftrightarrow u_e \in L^p(I_e) \quad \forall e \in \mathbb{E}, \qquad \|u\|_{L^p(\mathcal{G})}^p = \sum_{e \in \mathbb{E}} \|u_e\|_{L^p(I_e)}^p$$

while $H^1(\mathcal{G})$ is the set of continuous $u=(u_e)_e$ s.t

$$u_e \in H^1(I_e) \quad \forall e \in \mathbb{E}, \qquad \|u\|_{H^1(\mathcal{G})}^2 = \sum_{e \in \mathbb{E}} \|u_e\|_{H^1(I_e)}^2$$

Note: Continuity=no jump at vertices

12/43

Functions on graphs

A function $u: \mathcal{G} \to \mathbb{R}$ is a family of functions $u = (u_e)_{e \in E}$, with

$$u_e: I_e \to \mathbb{R} \qquad \forall e \in \mathcal{E}.$$

The usual Lebesgue function spaces can be defined as

$$u \in L^p(\mathcal{G}) \Leftrightarrow u_e \in L^p(I_e) \quad \forall e \in \mathcal{E}, \qquad \|u\|_{L^p(\mathcal{G})}^p = \sum_{e \in \mathcal{E}} \|u_e\|_{L^p(I_e)}^p,$$

while $H^1(\mathcal{G})$ is the set of $\mathsf{continuous}\ u = (u_e)_e$ s.t.

$$u_e \in H^1(I_e) \quad \forall e \in \mathbb{E}, \qquad \|u\|_{H^1(\mathcal{G})}^2 = \sum_{e \in \mathbb{E}} \|u_e\|_{H^1(I_e)}^2$$

Note: Continuity=no jump at vertices

12/43

Functions on graphs

A function $u: \mathcal{G} \to \mathbb{R}$ is a family of functions $u = (u_e)_{e \in E}$, with

$$u_e: I_e \to \mathbb{R} \qquad \forall e \in \mathcal{E}.$$

The usual Lebesgue function spaces can be defined as

$$u \in L^p(\mathcal{G}) \Leftrightarrow u_e \in L^p(I_e) \quad \forall e \in \mathcal{E}, \qquad \|u\|_{L^p(\mathcal{G})}^p = \sum_{e \in \mathcal{E}} \|u_e\|_{L^p(I_e)}^p,$$

while $H^1(\mathcal{G})$ is the set of continuous $u = (u_e)_e$ s.t.

$$u_e \in H^1(I_e) \quad \forall e \in \mathrm{E}, \qquad \|u\|_{H^1(\mathcal{G})}^2 = \sum_{e \in \mathrm{E}} \|u_e\|_{H^1(I_e)}^2.$$

Note: Continuity=no jump at vertices.

12/43

Bound states of prescribed mass

Let \mathcal{G} be a metric graph with nonempty \mathcal{K} and let $p \in [2, +\infty)$.

A bound state of mass $\mu > 0$ can be characterized as a function $u \in H^1(\mathcal{G})$, with $\|u\|_{L^2(\mathcal{G})}^2 = \mu$, for which:

(i) there exists $\lambda \in \mathbb{R}$ s.t.

$$u_e'' + \chi_{\kappa}(x)|u_e|^{p-2}u_e = \lambda u_e$$
 (stationary NLS equation)

(ii) for every vertex v in K

$$\sum_{e > v} \frac{du_e}{dx_e}(v) = 0$$
 (Kirchhoff condition)

Note: $du_e/dx_e({
m V})$ stands for $u_e'(0)$ or $-u_e'(\ell_e)$ depending on the orientation of l_e .

Bound states of prescribed mass

Let \mathcal{G} be a metric graph with nonempty \mathcal{K} and let $p \in [2, +\infty)$.

A bound state of mass $\mu > 0$ can be characterized as a function $u \in H^1(\mathcal{G})$, with $\|u\|_{L^2(\mathcal{G})}^2 = \mu$, for which:

- (i) there exists $\lambda \in \mathbb{R}$ s.t. $u''_e + \chi_{\mathcal{K}}(x)|u_e|^{p-2}u_e = \lambda u_e \qquad \text{(stationary NLS equation)}$
- (ii) for every vertex v in K

$$\sum_{e \succ v} \frac{du_e}{dx_e}(v) = 0$$
 (Kirchhoff condition).

Note: $du_e/dx_e(v)$ stands for $u'_e(0)$ or $-u'_e(\ell_e)$ depending on the orientation of l_e .

13/43

Bound states of prescribed mass

Let \mathcal{G} be a metric graph with nonempty \mathcal{K} and let $p \in [2, +\infty)$.

A bound state of mass $\mu > 0$ can be characterized as a function $u \in H^1(\mathcal{G})$, with $\|u\|_{L^2(\mathcal{G})}^2 = \mu$, for which:

(i) there exists $\lambda \in \mathbb{R}$ s.t.

$$u_e'' + \chi_{\mathcal{K}}(x)|u_e|^{p-2} u_e = \lambda u_e$$
 (stationary NLS equation);

(ii) for every vertex v in K

$$\sum_{e > v} \frac{du_e}{dx_e}(v) = 0$$
 (Kirchhoff condition).

Note: $du_e/dx_e(v)$ stands for $u_e'(0)$ or $-u_e'(\ell_e)$ depending on the orientation of l_e .

Bound states of prescribed mass

Let \mathcal{G} be a metric graph with nonempty \mathcal{K} and let $p \in [2, +\infty)$.

A bound state of mass $\mu > 0$ can be characterized as a function $u \in H^1(\mathcal{G})$, with $\|u\|_{L^2(\mathcal{G})}^2 = \mu$, for which:

(i) there exists $\lambda \in \mathbb{R}$ s.t.

$$u_e'' + \chi_{\kappa}(x)|u_e|^{p-2}u_e = \lambda u_e$$
 (stationary NLS equation);

(ii) for every vertex v in K

$$\sum_{e > v} \frac{du_e}{dx_e}(v) = 0$$
 (Kirchhoff condition).

Note: $du_e/dx_e(V)$ stands for $u'_e(0)$ or $-u'_e(\ell_e)$ depending on the orientation of I_e .

Let $E: H^1(\mathcal{G}) \to \mathbb{R}$ be the functional

$$E(u) = \frac{1}{2} \|u'\|_{L^2(\mathcal{G})}^2 - \frac{1}{p} \|u\|_{L^p(\mathcal{K})}^p = \frac{1}{2} \int_{\mathcal{G}} |u'|^2 dx - \frac{1}{p} \int_{\mathcal{K}} |u|^p dx.$$

For fixed $\mu > 0$ define

$$M = \{ u \in H^1(\mathcal{G}) : ||u||_{L^2(\mathcal{G})}^2 = \mu$$

and denote by E_M the restriction of E to M. Then, E_M is of class C^1 and critical points of E_M satisfy

$$\int_{\mathcal{G}} u'\varphi' \, dx - \int_{\mathcal{K}} |u|^{p-2} \, u\varphi \, dx + \lambda \int_{\mathcal{G}} u\varphi \, dx = 0 \quad \forall \varphi \in H^1(\mathcal{G}),$$

1

Critical points of E_M =Bound states of mass μ

14/43

Let $E: H^1(\mathcal{G}) \to \mathbb{R}$ be the functional

$$E(u) = \frac{1}{2} \|u'\|_{L^2(\mathcal{G})}^2 - \frac{1}{p} \|u\|_{L^p(\mathcal{K})}^p = \frac{1}{2} \int_{\mathcal{G}} |u'|^2 dx - \frac{1}{p} \int_{\mathcal{K}} |u|^p dx.$$

For fixed $\mu > 0$ define

$$M = \{u \in H^1(\mathcal{G}) : ||u||_{L^2(\mathcal{G})}^2 = \mu\}$$

and denote by E_M the restriction of E to M. Then, E_M is of class C^1 and critical points of E_M satisfy

$$\int_{\mathcal{G}} u'\varphi' dx - \int_{\mathcal{K}} |u|^{p-2} u\varphi dx + \lambda \int_{\mathcal{G}} u\varphi dx = 0 \quad \forall \varphi \in H^{1}(\mathcal{G}),$$

1

Critical points of E_M =Bound states of mass μ .

14/43

Let $E: H^1(\mathcal{G}) \to \mathbb{R}$ be the functional

$$E(u) = \frac{1}{2} \|u'\|_{L^2(\mathcal{G})}^2 - \frac{1}{p} \|u\|_{L^p(\mathcal{K})}^p = \frac{1}{2} \int_{\mathcal{G}} |u'|^2 dx - \frac{1}{p} \int_{\mathcal{K}} |u|^p dx.$$

For fixed $\mu > 0$ define

$$M = \{ u \in H^1(\mathcal{G}) : ||u||_{L^2(\mathcal{G})}^2 = \mu \}$$

and denote by E_M the restriction of E to M. Then, E_M is of class C^1 and critical points of E_M satisfy

$$\int_{\mathcal{G}} u'\varphi' \, dx - \int_{\mathcal{K}} |u|^{p-2} \, u\varphi \, dx + \lambda \int_{\mathcal{G}} u\varphi \, dx = 0 \quad \forall \varphi \in H^1(\mathcal{G}),$$

Critical points of $E_M=$ Bound states of mass μ

14/43

Let $E: H^1(\mathcal{G}) \to \mathbb{R}$ be the functional

$$E(u) = \frac{1}{2} \|u'\|_{L^2(\mathcal{G})}^2 - \frac{1}{p} \|u\|_{L^p(\mathcal{K})}^p = \frac{1}{2} \int_{\mathcal{G}} |u'|^2 dx - \frac{1}{p} \int_{\mathcal{K}} |u|^p dx.$$

For fixed $\mu > 0$ define

$$M = \{u \in H^1(\mathcal{G}) : ||u||_{L^2(\mathcal{G})}^2 = \mu\}$$

and denote by E_M the restriction of E to M. Then, E_M is of class C^1 and critical points of E_M satisfy

$$\int_{\mathcal{G}} u'\varphi' \, dx - \int_{\mathcal{K}} |u|^{p-2} \, u\varphi \, dx + \lambda \int_{\mathcal{G}} u\varphi \, dx = 0 \quad \forall \varphi \in H^1(\mathcal{G}),$$

1

Critical points of E_M =Bound states of mass μ .

14/43

Ground states of prescribed mass

Finally, we say that $u \in M$ is a ground state of mass $\mu > 0$ if

$$E_M(u) = \inf_{v \in M} E_M(v).$$

Remarks

- u is a critical point of E_M and hence a bound state of mass μ (the one with the least energy level);
- if u is a ground state, also |u| is such and, by a regularity argument, this entails that u > 0.

15/43

Ground states of prescribed mass

Finally, we say that $u \in M$ is a ground state of mass $\mu > 0$ if

$$E_M(u) = \inf_{v \in M} E_M(v).$$

Remarks:

Introduction

- u is a critical point of E_M and hence a bound state of mass μ (the one with the least energy level);
- if u is a ground state, also |u| is such and, by a regularity argument, this entails that u > 0.

15/43

Ground states of prescribed mass

Finally, we say that $u \in M$ is a ground state of mass $\mu > 0$ if

$$E_M(u) = \inf_{v \in M} E_M(v).$$

Remarks:

Introduction

- u is a critical point of E_M and hence a bound state of mass μ (the one with the least energy level);
- if u is a ground state, also |u| is such and, by a regularity argument, this entails that u > 0.

15/43

1 Introduction

2 Existence and nonexistence of ground states

3 Existence of multiple bound states

A general result

Theorem - T. - 2015

Let \mathcal{G} be a noncompact connected metric graph with nonempty compact core \mathcal{K} . Let $p \in (2,6)$ and $\mu > 0$. Then

$$\inf_{v\in M}E_M(v)\leq 0.$$

Moreover, if $\inf_{v \in M} E_M(v) < 0$, then the infimum is attained.

Note: the case $p \in (2,6)$ is usually called L^2 -subcritical case.

Note: in the sequel we tacitly suppose that \mathcal{G} , \mathcal{K} , p and μ always satisfy the previous assumptions.

17/43

A general result

Theorem - T. - 2015

Let \mathcal{G} be a noncompact connected metric graph with nonempty compact core \mathcal{K} . Let $p \in (2,6)$ and $\mu > 0$. Then

$$\inf_{v\in M}E_M(v)\leq 0.$$

Moreover, if $\inf_{v \in M} E_M(v) < 0$, then the infimum is attained.

Note: the case $p \in (2,6)$ is usually called L^2 -subcritical case.

Note: in the sequel we tacitly suppose that \mathcal{G} , \mathcal{K} , p and μ always satisfy the previous assumptions.

A general result

Theorem - T. - 2015

Let \mathcal{G} be a noncompact connected metric graph with nonempty compact core \mathcal{K} . Let $p \in (2,6)$ and $\mu > 0$. Then

$$\inf_{v\in M}E_M(v)\leq 0.$$

Moreover, if $\inf_{v \in M} E_M(v) < 0$, then the infimum is attained.

Note: the case $p \in (2,6)$ is usually called L^2 -subcritical case.

Note: in the sequel we tacitly suppose that \mathcal{G} , \mathcal{K} , p and μ always satisfy the previous assumptions.

Existence result

Theorem – T. – 2015

- If $p \in (2,4)$, for every $\mu > 0$ there exists a ground state of mass μ .
- If $p \in [4,6)$, there exists $\mu_1 > 0$ s.t., for every $\mu > \mu_1$, there exists a ground state of mass μ .

Note: μ_1 (not sharp in general) satisfies

$$\mu_1^{\frac{p-2}{6-p}} L = c_p N^{\frac{4}{6-p}}$$

where $L = \text{meas}(\mathcal{K})$, N is the number of unbounded edges of \mathcal{G} and c_n is a positive constant.

18/43

Existence result

Theorem – T. – 2015

- If $p \in (2,4)$, for every $\mu > 0$ there exists a ground state of mass μ .
- If $p \in [4,6)$, there exists $\mu_1 > 0$ s.t., for every $\mu > \mu_1$, there exists a ground state of mass μ .

Note: μ_1 (not sharp in general) satisfies

$$\mu_1^{\frac{p-2}{6-p}} L = c_p N^{\frac{4}{6-p}}$$

where $L = \text{meas}(\mathcal{K})$, N is the number of unbounded edges of \mathcal{G} and c_n is a positive constant.

18/43

For $\alpha \in (0, \sqrt{\mu/L})$ and $m = \frac{\mu - \alpha^2 L}{N}$, define the competitor

$$u(x) = \begin{cases} \alpha & \text{in } \mathcal{K} \\ \alpha e^{-\frac{\alpha^2 x}{2m}} & \text{in each half-line.} \end{cases}$$

Then $E_M(u)$ reads

$$E_M(u) = \frac{\alpha^4 N^2}{8(\mu - \alpha^2 L)} - \frac{\alpha^p L}{p}$$

If $p \in (2,4)$, then $E_M(u) < 0$ provided α is small. If $p \in [4,6)$, then a sufficient condition to have a value $\alpha_0 \in (0, \sqrt{\mu/L})$ s.t. $E_M(u) < 0$ is that $\mu > \mu_1$.

For $\alpha \in (0, \sqrt{\mu/L})$ and $m = \frac{\mu - \alpha^2 L}{N}$, define the competitor

$$u(x) = \begin{cases} \alpha & \text{in } \mathcal{K} \\ \alpha e^{-\frac{\alpha^2 x}{2m}} & \text{in each half-line.} \end{cases}$$

Then $E_M(u)$ reads

$$E_M(u) = \frac{\alpha^4 N^2}{8(\mu - \alpha^2 L)} - \frac{\alpha^p L}{p}$$

If $p \in (2,4)$, then $E_M(u) < 0$ provided α is small. If $p \in [4,6)$, then a sufficient condition to have a value $\alpha_0 \in (0, \sqrt{\mu/L})$ s.t. $E_M(u) < 0$ is that $\mu > \mu_1$.

For $\alpha \in (0, \sqrt{\mu/L})$ and $m = \frac{\mu - \alpha^2 L}{N}$, define the competitor

$$u(x) = \begin{cases} \alpha & \text{in } \mathcal{K} \\ \alpha e^{-\frac{\alpha^2 x}{2m}} & \text{in each half-line.} \end{cases}$$

Then $E_M(u)$ reads

$$E_M(u) = \frac{\alpha^4 N^2}{8(\mu - \alpha^2 L)} - \frac{\alpha^p L}{p}$$

If $p \in (2,4)$, then $E_M(u) < 0$ provided α is small. If $p \in [4,6)$, then a sufficient condition to have a value $\alpha_0 \in (0, \sqrt{\mu/L})$ s.t. $E_M(u) < 0$ is that $\mu > \mu_1$.

For $\alpha \in (0, \sqrt{\mu/L})$ and $m = \frac{\mu - \alpha^2 L}{N}$, define the competitor

$$u(x) = \begin{cases} \alpha & \text{in } \mathcal{K} \\ \alpha e^{-\frac{\alpha^2 x}{2m}} & \text{in each half-line.} \end{cases}$$

Then $E_M(u)$ reads

$$E_M(u) = \frac{\alpha^4 N^2}{8(\mu - \alpha^2 L)} - \frac{\alpha^p L}{p}$$

If $p \in (2,4)$, then $E_M(u) < 0$ provided α is small. If $p \in [4,6)$, then a sufficient condition to have a value $\alpha_0 \in (0, \sqrt{\mu/L})$ s.t. $E_M(u) < 0$ is that $\mu > \mu_1$.

Nonexistence result

The threshold on μ in the existence result is an actual phenomenon or a lack of our proof?

Politecnico di Torino

Nonexistence result

The threshold on μ in the existence result is an actual phenomenon or a lack of our proof.

Theorem - T. - 2015

If $p \in [4,6)$, there exists $\mu_2 > 0$ s.t., for every $\mu < \mu_2$, there cannot exist any ground state of mass μ .

Note: also μ_2 can be explicitly computed and satisfies

$$\mu_2^{\frac{p-2}{6-p}} L = \mathcal{C}_p^{\frac{4-p}{6-p}} \mathcal{C}_{\infty}^{-p},$$

where C_p and C_{∞} are the constants of the L^p -version and the L^{∞} -version (respectively) of the Gagliardo-Nirenberg Inequality

Nonexistence result

The threshold on μ in the existence result is an actual phenomenon or a lack of our proof.

Theorem - T. - 2015

If $p \in [4,6)$, there exists $\mu_2 > 0$ s.t., for every $\mu < \mu_2$, there cannot exist any ground state of mass μ .

Note: also μ_2 can be explicitly computed and satisfies

$$\mu_2^{\frac{p-2}{6-p}}L=\mathcal{C}_p^{\frac{4-p}{6-p}}\mathcal{C}_{\infty}^{-p},$$

where C_p and C_∞ are the constants of the L^p -version and the L^∞ -version (respectively) of the Gagliardo-Nirenberg Inequality.

The number of unbounded edges N affects existence since

$$\mu_1 = (c_p L^{-1} N^{\frac{4}{6-p}})^{\frac{6-p}{p-2}}.$$

How is it that it does not affect nonexistence (recall that μ_2 does not depends on N)? \Rightarrow Actually it does!

Indeed, if $N \geq 2$, then we can cover \mathcal{G} with a family of metric graphs $(\mathcal{G}_i)_{i=1}^{\nu}$ $(2 \leq \nu \leq N)$ pairwise disjoint (up to sets of zero measure) and such that each \mathcal{G}_i contains at least an unbounded edge. We call such a family a partition of \mathcal{G} .

Note: the partition of a metric graph is not unique in general

The number of unbounded edges N affects existence since

$$\mu_1 = (c_p L^{-1} N^{\frac{4}{6-p}})^{\frac{6-p}{p-2}}.$$

How is it that it does not affect nonexistence (recall that μ_2 does not depends on N)? \Rightarrow Actually it does!

Indeed, if $N \geq 2$, then we can cover \mathcal{G} with a family of metric graphs $(\mathcal{G}_i)_{i=1}^{\nu}$ $(2 \leq \nu \leq N)$ pairwise disjoint (up to sets of zero measure) and such that each \mathcal{G}_i contains at least an unbounded edge. We call such a family a partition of \mathcal{G} .

Note: the partition of a metric graph is not unique in general

The number of unbounded edges N affects existence since

$$\mu_1 = (c_p L^{-1} N^{\frac{4}{6-p}})^{\frac{6-p}{p-2}}.$$

How is it that it does not affect nonexistence (recall that μ_2 does not depends on N)? \Rightarrow Actually it does!

Indeed, if $N \geq 2$, then we can cover \mathcal{G} with a family of metric graphs $(\mathcal{G}_i)_{i=1}^{\nu}$ $(2 \leq \nu \leq N)$ pairwise disjoint (up to sets of zero measure) and such that each \mathcal{G}_i contains at least an unbounded edge. We call such a family a partition of \mathcal{G} .

Note: the partition of a metric graph is not unique in general

The number of unbounded edges N affects existence since

$$\mu_1 = (c_p L^{-1} N^{\frac{4}{6-p}})^{\frac{6-p}{p-2}}.$$

How is it that it does not affect nonexistence (recall that μ_2 does not depends on N)? \Rightarrow Actually it does!

Indeed, if $N \geq 2$, then we can cover \mathcal{G} with a family of metric graphs $(\mathcal{G}_i)_{i=1}^{\nu}$ $(2 \leq \nu \leq N)$ pairwise disjoint (up to sets of zero measure) and such that each \mathcal{G}_i contains at least an unbounded edge. We call such a family a partition of \mathcal{G} .

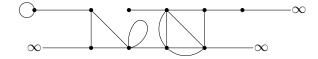
Note: the partition of a metric graph is not unique in general.

Example

Consider the graph \mathcal{G} of the beginning (N=3).

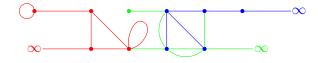
Example

Consider the graph \mathcal{G} of the beginning (N = 3).



Example

Consider the graph \mathcal{G} of the beginning (N = 3).



A possible partition is given by \mathcal{G}_1 , \mathcal{G}_2 , \mathcal{G}_3 .

Example

Consider the graph \mathcal{G} of the beginning (N = 3).

A possible partition is given by \mathcal{G}_1 , \mathcal{G}_2 , \mathcal{G}_3 .

Another one by \mathcal{G}_4 , \mathcal{G}_5 .

And so on ...

Improvement of nonexistence

Corollary – T. – 2015

Let $(\mathcal{G}_i)_{i=1}^{\nu}$ be a partition of \mathcal{G} . Setting $L_i = \operatorname{meas}(\mathcal{G}_i \cap \mathcal{K})$, if

$$\mu^{\frac{p-2}{6-p}} < \widehat{\mu}_i^{\frac{p-2}{6-p}} = \mathbf{L}_i^{-1} \mathcal{C}_{\overline{p}-\overline{p}}^{\frac{4-p}{6-p}} \mathcal{C}_{\infty}^{-p} \quad \forall i \in \{1, \dots, \nu\},$$

then E_M does not admit a minimizer.

How can this corollary "improve" the previous result? Example: double bridge graph.

Politecnico di Torino

Improvement of nonexistence

Corollary – T. – 2015

Let $(\mathcal{G}_i)_{i=1}^{\nu}$ be a partition of \mathcal{G} . Setting $L_i = \operatorname{meas}(\mathcal{G}_i \cap \mathcal{K})$, if

$$\mu^{\frac{p-2}{6-p}} < \widehat{\mu}_i^{\frac{p-2}{6-p}} = \mathbf{L}_i^{-1} \mathcal{C}_p^{\frac{4-p}{6-p}} \mathcal{C}_{\infty}^{-p} \quad \forall i \in \{1, \dots, \nu\},$$

then E_M does not admit a minimizer.

How can this corollary "improve" the previous result? Example: double bridge graph.

Improvement of nonexistence

Corollary – T. – 2015

Let $(\mathcal{G}_i)_{i=1}^{\nu}$ be a partition of \mathcal{G} . Setting $L_i = \operatorname{meas}(\mathcal{G}_i \cap \mathcal{K})$, if

$$\mu^{\frac{p-2}{6-p}} < \widehat{\mu}_i^{\frac{p-2}{6-p}} = \mathbf{L}_i^{-1} \mathcal{C}_p^{\frac{4-p}{6-p}} \mathcal{C}_{\infty}^{-p} \quad \forall i \in \{1, \dots, \nu\},$$

then E_M does not admit a minimizer.

How can this corollary "improve" the previous result? Example: double bridge graph.

Improvement of nonexistence

Corollary – T. – 2015

Let $(\mathcal{G}_i)_{i=1}^{\nu}$ be a partition of \mathcal{G} . Setting $L_i = \operatorname{meas}(\mathcal{G}_i \cap \mathcal{K})$, if

$$\mu^{\frac{p-2}{6-p}} < \widehat{\mu}_i^{\frac{p-2}{6-p}} = \mathbf{L}_i^{-1} \mathcal{C}_{\overline{p}-\overline{p}}^{\frac{4-p}{6-p}} \mathcal{C}_{\infty}^{-p} \quad \forall i \in \{1, \dots, \nu\},$$

then E_M does not admit a minimizer.

How can this corollary "improve" the previous result? Example: double bridge graph.

If one choose partition \mathcal{G}_1 , \mathcal{G}_2 , then $L_1 = L_2 = L/2$ and $\widehat{\mu}_i > \mu_2$.

27/43

3 Existence of multiple bound states

Lorenzo Tentarelli Politecnico di Torino

Basics on solitons

The soliton of mass μ is the unique minimizer (up to a change of sign and translations) of

$$\mathcal{E}(u) = \frac{1}{2} \int_{\mathbb{R}} |u'|^2 dx - \frac{1}{\rho} \int_{\mathbb{R}} |u|^p dx$$

and the unique solution of

$$u'' + |u|^{p-2} u = \lambda u$$

among functions $u \in H^1(\mathbb{R})$ satisfying $||u||_{L^2(\mathbb{R})}^2 = \mu$. In addition, this function is known explicitly

$$\varphi_{\mu}(x) = \mu^{\frac{2}{6-p}} \varphi_1 \left(\mu^{\frac{p-2}{6-p}} x \right)$$

with
$$arphi_1(x)=C_{
m p}{
m sech}^{rac{2}{p-2}}(c_{
m p}x)$$
 and $C_{
m p},\,c_{
m p}>0$.

29/43

Basics on solitons

The soliton of mass μ is the unique minimizer (up to a change of sign and translations) of

$$\mathcal{E}(u) = \frac{1}{2} \int_{\mathbb{R}} |u'|^2 dx - \frac{1}{p} \int_{\mathbb{R}} |u|^p dx$$

and the unique solution of

$$u'' + |u|^{p-2} u = \lambda u$$

among functions $u \in H^1(\mathbb{R})$ satisfying $\|u\|_{L^2(\mathbb{R})}^2 = \mu$. In addition, this function is known explicitly

$$\varphi_{\mu}(x) = \mu^{\frac{2}{6-p}} \varphi_1 \left(\mu^{\frac{p-2}{6-p}} x \right)$$

with $\varphi_1(x) = C_0 \operatorname{sech}^{\frac{2}{p-2}}(c_0 x)$ and $C_0, c_0 > 0$.

29/43

Basics on solitons

The soliton of mass μ is the unique minimizer (up to a change of sign and translations) of

$$\mathcal{E}(u) = \frac{1}{2} \int_{\mathbb{R}} |u'|^2 dx - \frac{1}{p} \int_{\mathbb{R}} |u|^p dx$$

and the unique solution of

$$u'' + |u|^{p-2} u = \lambda u$$

among functions $u \in H^1(\mathbb{R})$ satisfying $||u||_{L^2(\mathbb{R})}^2 = \mu$. In addition, this function is known explicitly

$$\varphi_{\mu}(x) = \mu^{\frac{2}{6-p}} \varphi_1 \left(\mu^{\frac{p-2}{6-p}} x \right)$$

with
$$\varphi_1(x) = C_0 \operatorname{sech}^{\frac{2}{p-2}}(c_0 x)$$
 and C_0 , $c_0 > 0$.

29/43

Existence of multiple bound states

Theorem – Serra, T. – 2015

For every $k \in \mathbb{N}$, there exists $\mu_k > 0$ such that for all $\mu \geq \mu_k$ there exist at least k distinct pairs $(\pm u_j)$ of bound states of mass μ . Moreover, for every $j = 1, \ldots, k$

$$E_M(\pm u_j) \leq j\mathcal{E}(\varphi_{\mu/j}) + \sigma_k(\mu) < 0$$

where $\sigma_k(\mu) \to 0$ (exponentially fast) as $\mu \to \infty$. Finally, for each j, the Lagrange multiplier λ_j related to u_j is positive.

Note: the result holds also if the nonlinearity is placed just on a nontrivial subgraph of \mathcal{K} (even on a single edge).

30/43

Existence of multiple bound states

Theorem – Serra, T. – 2015

For every $k \in \mathbb{N}$, there exists $\mu_k > 0$ such that for all $\mu \geq \mu_k$ there exist at least k distinct pairs $(\pm u_j)$ of bound states of mass μ . Moreover, for every $j = 1, \ldots, k$

$$E_M(\pm u_j) \leq j\mathcal{E}(\varphi_{\mu/j}) + \sigma_k(\mu) < 0$$

where $\sigma_k(\mu) \to 0$ (exponentially fast) as $\mu \to \infty$. Finally, for each j, the Lagrange multiplier λ_j related to u_j is positive.

Note: the result holds also if the nonlinearity is placed just on a nontrivial subgraph of \mathcal{K} (even on a single edge).

30/43

An "intermediate" phenomenon

Take, for istance ©

- In the degenerate case when the interval shrinks to a point $(\mathcal{K} = \emptyset)$ the problem becomes linear \Rightarrow there cannot exist any bound state of mass μ .
- In the degenerate case when the interval extends to the whole real line (" $\mathcal{K} = \mathcal{G}$ ") \Rightarrow there are infinitely many ground states of mass μ (the solitons), but no bound state at higher levels.

Nonlinearity on a "compact portion of positive measure" generates bound states at higher energies!

An "intermediate" phenomenon

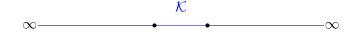
Take, for istance \mathcal{G}

- In the degenerate case when the interval shrinks to a point $(\mathcal{K} = \emptyset)$ the problem becomes linear \Rightarrow there cannot exist any bound state of mass μ .
- In the degenerate case when the interval extends to the whole real line (" $\mathcal{K} = \mathcal{G}$ ") \Rightarrow there are infinitely many ground states of mass μ (the solitons), but no bound state at higher levels.

Nonlinearity on a "compact portion of positive measure" generates bound states at higher energies!

An "intermediate" phenomenon

Take, for istance \mathcal{G}

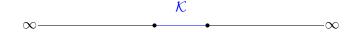


- In the degenerate case when the interval shrinks to a point $(\mathcal{K} = \emptyset)$ the problem becomes linear \Rightarrow there cannot exist any bound state of mass μ .
- In the degenerate case when the interval extends to the whole real line (" $\mathcal{K} = \mathcal{G}$ ") \Rightarrow there are infinitely many ground states of mass μ (the solitons), but no bound state at higher levels.

Nonlinearity on a "compact portion of positive measure" generates bound states at higher energies!

An "intermediate" phenomenon

Take, for istance \mathcal{G}

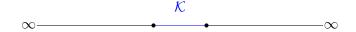


- In the degenerate case when the interval shrinks to a point $(\mathcal{K} = \emptyset)$ the problem becomes linear \Rightarrow there cannot exist any bound state of mass μ .
- In the degenerate case when the interval extends to the whole real line (" $\mathcal{K} = \mathcal{G}$ ") \Rightarrow there are infinitely many ground states of mass μ (the solitons), but no bound state at higher levels.

Nonlinearity on a "compact portion of positive measure" generates bound states at higher energies!

An "intermediate" phenomenon

Take, for istance \mathcal{G}



- In the degenerate case when the interval shrinks to a point $(\mathcal{K} = \emptyset)$ the problem becomes linear \Rightarrow there cannot exist any bound state of mass μ .
- In the degenerate case when the interval extends to the whole real line (" $\mathcal{K} = \mathcal{G}$ ") \Rightarrow there are infinitely many ground states of mass μ (the solitons), but no bound state at higher levels.

Nonlinearity on a "compact portion of positive measure" generates bound states at higher energies!

For every $A \subset H^1(\mathcal{G}) \setminus \{0\}$ closed and symmetric we define the *Krasnosel'skii genus* of A as

$$\gamma(A) = \min\{n \in \mathbb{N} : \exists f : A \to \mathbb{R}^n \setminus \{0\} \text{ continuous and odd}\}.$$

Then, introducing the minimax classes

$$\Gamma_j = \{A \subset M : A \text{ compact, symmetric and } \gamma(A) \geq j\},$$

we can define the levels

$$c_j = \inf_{A \subset \Gamma_i} \max_{u \in A} E_M(u).$$

If $c_j \in \mathbb{R}$ and E_M satisfies the *Palais–Smale condition* at level c_i , then c_i is a critical level for E_M

32/43

For every $A \subset H^1(\mathcal{G}) \setminus \{0\}$ closed and symmetric we define the *Krasnosel'skii genus* of A as

$$\gamma(A) = \min\{n \in \mathbb{N} : \exists f : A \to \mathbb{R}^n \setminus \{0\} \text{ continuous and odd}\}.$$

Then, introducing the minimax classes

$$\Gamma_j = \{A \subset M : A \text{ compact, symmetric and } \gamma(A) \geq j\},$$

we can define the levels

$$c_j = \inf_{A \subset \Gamma_i} \max_{u \in A} E_M(u).$$

If $c_j \in \mathbb{R}$ and E_M satisfies the *Palais–Smale condition* at level c_i , then c_i is a critical level for E_M

32/43

For every $A \subset H^1(\mathcal{G}) \setminus \{0\}$ closed and symmetric we define the *Krasnosel'skii genus* of A as

$$\gamma(A) = \min\{n \in \mathbb{N} : \exists f : A \to \mathbb{R}^n \setminus \{0\} \text{ continuous and odd}\}.$$

Then, introducing the minimax classes

$$\Gamma_j = \{A \subset M : A \text{ compact, symmetric and } \gamma(A) \geq j\},\$$

we can define the levels

$$c_j = \inf_{A \subset \Gamma_i} \max_{u \in A} E_M(u).$$

If $c_j \in \mathbb{R}$ and E_M satisfies the *Palais–Smale condition* at level c_i , then c_i is a critical level for E_M

32/43

For every $A \subset H^1(\mathcal{G}) \setminus \{0\}$ closed and symmetric we define the *Krasnosel'skii genus* of A as

$$\gamma(A) = \min\{n \in \mathbb{N} : \exists f : A \to \mathbb{R}^n \setminus \{0\} \text{ continuous and odd}\}.$$

Then, introducing the minimax classes

$$\Gamma_j = \{A \subset M : A \text{ compact, symmetric and } \gamma(A) \geq j\},\$$

we can define the levels

$$c_j = \inf_{A \subset \Gamma_i} \max_{u \in A} E_M(u).$$

If $c_j \in \mathbb{R}$ and E_M satisfies the *Palais–Smale condition* at level c_i , then c_i is a critical level for E_M

32/43

33/43

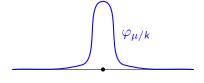
Sketch of the proof: classes at negative levels

Since one can show that E_M satisfies the Palais–Smale condition if and only if c < 0, it is necessary to prove that $c_1, \ldots, c_k < 0$ (provided μ is large!).

To this aim, we take a soliton of mass μ/k ,

Since one can show that E_M satisfies the Palais–Smale condition if and only if c < 0, it is necessary to prove that $c_1, \ldots, c_k < 0$ (provided μ is large!).

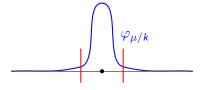
To this aim, we take a soliton of mass μ/k ,



Politecnico di Torino

Since one can show that E_M satisfies the Palais–Smale condition if and only if c < 0, it is necessary to prove that $c_1, \ldots, c_k < 0$ (provided μ is large!).

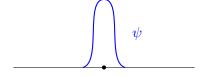
To this aim, we take a soliton of mass μ/k , cut-off its "tails",



34/43

Since one can show that E_M satisfies the Palais–Smale condition if and only if c < 0, it is necessary to prove that $c_1, \ldots, c_k < 0$ (provided μ is large!).

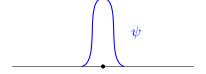
To this aim, we take a soliton of mass μ/k , cut-off its "tails", lower and multiply by a factor to arrange the mass.



 ψ is "close" to the soliton and, as $\mathcal{E}(arphi_{\mu/j}) <$ 0, has negative energy.

Since one can show that E_M satisfies the Palais–Smale condition if and only if c < 0, it is necessary to prove that $c_1, \ldots, c_k < 0$ (provided μ is large!).

To this aim, we take a soliton of mass μ/k , cut-off its "tails", lower and multiply by a factor to arrange the mass.

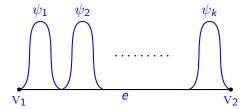


 ψ is "close" to the soliton and, as $\mathcal{E}(\varphi_{\mu/j}) < 0$, has negative energy.

Now, defining the function $h: S^{k-1} \to M$ as

$$h(\theta) = \sqrt{k} \sum_{i=1}^k \theta_i \psi_i,$$

with



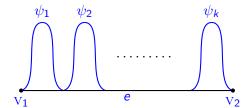
$$A = h(S^{k-1}).$$

36/43

Now, defining the function $h: S^{k-1} \to M$ as

$$h(\theta) = \sqrt{k} \sum_{i=1}^{k} \theta_i \psi_i,$$

with



and setting

$$A = h(S^{k-1}).$$

36/43

we have a compact and symmetric set with $\gamma(A) \ge k$ and $E_M(u) < 0$ for all $u \in A$.

Then, since $c_k = \inf_{A \subset \Gamma_k} \max_{u \in A} E_M(u)$, there results $c_k < 0$. Recalling that by definition $c_1 \le c_2 \le \cdots \le c_k$, the proof is complete (we had to prove $c_1, \ldots, c_k < 0$!).

Last question: where we used the fact that μ is large? why we need to enlarge μ when k increases?

Beacause we must place more and more disjoint copies of ψ (with smaller and smaller support) on e keeping at the same time the energy level negative.

37/43

we have a compact and symmetric set with $\gamma(A) \ge k$ and $E_M(u) < 0$ for all $u \in A$.

Then, since $c_k = \inf_{A \subset \Gamma_k} \max_{u \in A} E_M(u)$, there results $c_k < 0$. Recalling that by definition $c_1 \le c_2 \le \cdots \le c_k$, the proof is complete (we had to prove $c_1, \ldots, c_k < 0$!).

Last question: where we used the fact that μ is large? why we need to enlarge μ when k increases?

Beacause we must place more and more disjoint copies of ψ (with smaller and smaller support) on e keeping at the same time the energy level negative.

we have a compact and symmetric set with $\gamma(A) \ge k$ and $E_M(u) < 0$ for all $u \in A$.

Then, since $c_k = \inf_{A \subset \Gamma_k} \max_{u \in A} E_M(u)$, there results $c_k < 0$. Recalling that by definition $c_1 \le c_2 \le \cdots \le c_k$, the proof is complete (we had to prove $c_1, \ldots, c_k < 0$!).

Last question: where we used the fact that μ is large? why we need to enlarge μ when k increases?

Beacause we must place more and more disjoint copies of ψ (with smaller and smaller support) on e keeping at the same time the energy level negative.

we have a compact and symmetric set with $\gamma(A) \ge k$ and $E_M(u) < 0$ for all $u \in A$.

Then, since $c_k = \inf_{A \subset \Gamma_k} \max_{u \in A} E_M(u)$, there results $c_k < 0$. Recalling that by definition $c_1 \le c_2 \le \cdots \le c_k$, the proof is complete (we had to prove $c_1, \ldots, c_k < 0$!).

Last question: where we used the fact that μ is large? why we need to enlarge μ when k increases?

Beacause we must place more and more disjoint copies of ψ (with smaller and smaller support) on e keeping at the same time the energy level negative.

38/43

And finally...

THANK YOU FOR YOUR ATTENTION!

Sketch of the proof: a general result

To prove the first part, one can easily find a sequence $(v_k) \subset M$ s.t. $\lim_k E_M(v_k) = 0$.

On the other hand, using the L^p -version of the Gagliardo-Nirenberg Inequality

$$||u||_{L^{p}(\mathcal{G})}^{p} \leq C_{p}||u||_{L^{2}(\mathcal{G})}^{\frac{p}{2}+1}||u'||_{L^{2}(\mathcal{G})}^{\frac{p}{2}-1} \quad \forall u \in H^{1}(\mathcal{G}),$$

there results that each minimizing sequence $(u_k) \subset M$ is bounded in $H^1(\mathcal{G})$.

Then $u_k \rightharpoonup u$ in $H^1(\mathcal{G})$ and, by Rellich Theorem, we see that

$$E(u) \leq \liminf_k E_M(u_k)$$
.

Since $\inf_{v \in M} E_M(v) < 0$ prevents $||u||_{L^2(G)}^2 < \mu$, one concludes.

39/43

Sketch of the proof: nonexistence result (1/2)

Since $\inf_{v \in M} E_M(v) \le 0$ for all $\mu > 0$, it is sufficient to find $\mu_2 > 0$ s.t. for all $\mu < \mu_2$ and all $u \in M = \{u \in H^1(\mathcal{G}) : \|u\|_{L^2(\mathcal{G})}^2 = \mu\}$ there results

$$E_{M}(u) > 0.$$

By an inductive argument one sees that $E_M(u) \leq 0$ entails

$$||u'||_{L^{2}(\mathcal{G})^{2}} \leq \frac{1}{C_{\infty}^{4}\mu} ||u||_{L^{\infty}(\mathcal{G})}^{4(\frac{p}{4})^{n+1}} (C_{\infty}^{4}\mu L)^{\sum_{i=1}^{n}(\frac{p}{4})^{i}} \quad \forall n \geq 0,$$

by a repeated use of the L^{∞} -version of GNI

$$||u||_{L^{\infty}(\mathcal{G})} \leq C_{\infty} ||u||_{L^{2}(\mathcal{G})}^{1/2} ||u'||_{L^{2}(\mathcal{G})}^{1/2} \quad \forall u \in H^{1}(\mathcal{G}).$$

40/43

Sketch of the proof: nonexistence result (2/2)

Then $\forall n > 0$

$$\begin{split} \|u'\|_{L^2(\mathcal{G})}^2 &\leq \mathcal{C}_p^2 \mu^3 (\mathcal{C}_\infty^4 \mu L)^{n+1} & \text{if } p = 4 \\ \|u'\|_{L^2(\mathcal{G})}^2 &\leq \mathcal{C}_p^{\frac{4}{6-p}} \mu^{\frac{p+2}{6-p}} \left(\mathcal{C}_\infty^{\frac{4p}{p-4}} \mathcal{C}_p^{\frac{4}{6-p}} \mu^{\frac{4(p-2)}{(p-4)(6-p)}} L^{\frac{4}{p-4}} \right)^{(\frac{p}{4})^{n+1}-1} & \text{if } p > 4. \end{split}$$

If the terms in brackets are < 1, that is

$$\mu < \mu_2 = \left(L^{-1}C_p^{\frac{4-p}{6-p}}C_{\infty}^{-p}\right)^{\frac{6-p}{p-2}},$$

then $\|u'\|_{L^2(\mathcal{G})}^2 = 0$. Since $u \in H^1(\mathcal{G})$, there follows that $u \equiv 0$, but this is a contradiction with $\|u\|_{L^2(\mathcal{G})}^2 = \mu > 0 \Rightarrow \frac{E_M(u) \leq 0}{2}$.

41/43

A remark on homothety

Let $u \in M$ and $\sigma > 0$. The function $w(x) = \sigma^{\frac{2}{6-p}} u\left(\sigma^{\frac{p-2}{6-p}}x\right)$ belongs to $M_{\sigma} = \{v \in H^1(\mathcal{G}_{\sigma}) : \|v\|_{L^2(\mathcal{G}_{\sigma})}^2 = \sigma\mu\}$, where \mathcal{G}_{σ} is a metric graph obtained from \mathcal{G} by an homothety of factor $\sigma^{-\frac{p-2}{6-p}}$. Moreover, $E_{M_{\sigma}}(w) = \sigma^{\frac{p+2}{6-p}} E_{M}(u)$ and hence

w is a ground state of mass $\sigma\mu$ in \mathcal{G}_{σ}

 \updownarrow

u is a ground state of mass μ in $\mathcal G$

Note that:

- \blacksquare μ_1 and μ_2 scale coherently with this transformation;
- one can formulate all the previous results in terms of L in place of μ .

42/43

Sketch of the proof: Palais-Smale condition

We say that $(u_k) \subset M$ is a *Palais-Smale sequence* at level c if

$$E_M(u_k) \rightarrow c \qquad ||E'_M(u_k)|| \rightarrow 0$$

and that E_M satisfies the *Palais-Smale condition* at level c (i.e., $(PS)_c$) if each PS sequence admits a converging subsequence in M.

It is possible to check that E_M satisfies $(PS)_c$ only when c < 0:

- counterexamples for $c \geq 0$;
- standard techniques for c < 0.